
September 2006 www.stsc.hill.af.mil 15

In the early 1960s, the National
Aeronautics and Space Administration

(NASA) was building the Saturn V space-
craft to go to the moon and back. In order
to accomplish this mission, NASA had to
develop an automated navigation system.
The hardware and software required for
this journey was housed in an instrumen-
tation unit (IU). However, no safety-criti-
cal software had ever been developed, and
the use of computers and sensors to relay
safety-critical data had never been used.
Digital computers were in their infancy
and the hardware was unreliable. In order
to compensate, NASA built three identical
units, each with its own hardware and sets
of input sensors. The outputs from the
three units were compared and if one was
out of line with the other two, that output
was ignored1.

In today’s world, computers are sever-
al orders of magnitude more reliable and
are much faster. As a result, the use and
complexity of tasks assigned to computa-
tional systems are also orders of magni-
tude greater. Today’s processors and soft-
ware programs are used in safety-critical
applications, ranging from heart monitors
to navigation systems to control of
nuclear power plants and weapons.
Development of full, independent redun-
dant systems for most of these applica-
tions would be cost-prohibitive. As a
result, systems and software engineers
should consider applying built-in-test
(BIT) procedures to the development of
all safety-critical functions, determining
where failures are likely to occur and what
the effect of the failures will be on overall
safety, along with providing backup proce-
dures to allow safe task completion.

Although BIT evaluations are com-
mon, their use is often limited to a com-
paratively small number of software and
system developers as BIT is not usually
taught as a formal curriculum in schools.
As a result, BIT may not be considered by
systems engineers for new systems, partic-
ularly when the purpose of the new sys-
tem is to demonstrate a new capability or

engineering concept. The assumption is
that if the design is good and thoroughly
tested, all of the hardware/software func-
tions will perform as intended. This article
provides the reader with a basic under-
standing of how BIT techniques are used
in embedded systems and how they can be
incorporated into new system require-
ments to reduce the risk of unanticipated
system failures. With this understanding,
the reader (systems engineers, hardware
developers, or software developers)
should have at least some capability to
evaluate the effectiveness and complete-
ness of BIT requirements and functions
employed in safety-critical systems.

The backup procedures and responses
to anticipated errors should also be con-
sidered in developing a safe system. The
development of backup procedures is
unique to each application and is beyond
the scope of this article. However, backup
sets of inputs provide a partial redundan-
cy at a much lower cost than a full system
redundancy. These backup sets of inputs
may include additional sensors used to
verify the primary sensor inputs. For
instance, velocity of an aircraft can be
measured by wind velocity or with Global
Positioning System (GPS) inputs. The
wind velocity is considered more accurate,

but the GPS has more checks and may be
more reliable; therefore, the GPS inputs
may act as the backup for the wind veloc-
ity measurements. Alternate procedures,
such as activation of a backup system or
initiation of manual procedures when the
automated system(s) fails, should also be
included in the system engineer’s require-
ments.

Typical Embedded System
In order to understand BIT requirements
for an embedded system, one has to
understand how an embedded system
operates. Figure 1 presents a simple sys-
tem consisting of several subsystems.
During normal operation, each subsystem
provides and receives data that are critical
to performing safety-critical functions. If
a sensor system fails to provide the correct
data to the flight control system or the
data is corrupted during transmission, the
safety of the aircraft and passengers could
be jeopardized.

Each subsystem may also be com-
prised of lower-level components, as
shown in Figure 2 (see page 16). Each
component has the potential of corrupt-
ing the subsystem as well as other subsys-
tems in the system. In the example sub-
system, Processor 1 reads inputs from var-

Application and Evaluation of Built-In-Test (BIT)
Techniques in Building Safe Systems

The use of automated functions to monitor and control the activities of potentially hazardous systems is almost unlimited.
Ensuring an adequate built-in-test (BIT) (i.e., that a system is fully functional and operational) is one of the most critical
aspects of developing safe, automated systems. However, because of its very specialized nature, application, and evaluation,
BIT requirements and techniques are often neglected or misunderstood. This article presents some of the goals and uses of
BIT, as well as the applications in providing a safe system. 

James A. Butler
L-3 Communications

Figure 1: System of Subsystems

 



Software Assurance

ious sensors, user responses, etc; refor-
mats the inputs into engineering units; and
provides the data to Processor 2.
Processor 2 determines control com-
mands based on the inputs and provides
responses to Processor 1. Processor 1
then reformats the outputs and sends the
data to each of the respective output units
where it may be used on other safety-crit-
ical functions.

Interfaces to the system may include
operational interfaces such as multiplexer
(MUX), digital, discrete, analog, and main-
tenance interfaces. Internal interfaces
include all processor-to-processor and
processor-to-peripheral interfaces, includ-
ing dual-port random-access memory
(RAM), which is memory shared by both
processors.

The processors typically consist of
programmable read-only memory
(PROM), non-volatile RAM (NVRAM),
and volatile RAM. PROM is used to store
data and operational code while the sys-
tem is not in use. The boot loader is usu-
ally installed and runs on NVRAM.
During normal startup operations, the
boot loader moves the operational code
from PROM to volatile RAM and acti-
vates it. The volatile RAM is used to house
the operational code and provide tempo-
rary storage for data during real-time
operations.

Software and/or hardware interrupts

are usually used to synchronize the activi-
ties between processors. In a data-driven
system, Processor 1 provides an interrupt
to Processor 2 when new data is available.
Conversely, when Processor 2 is ready to
output its data, it provides an interrupt to
Processor 1. In a time-driven system,
Processor 1 and/or 2 are provided with
time-driven hardware and/or software-
driven interrupts.

Operational Functions
In the typical system discussed here, there
could be a number of high-level functions
including the boot loader, operational
code, and interface manipulations:
• Boot loader. The boot loader codes

typically reside in and operate out of
NVRAM. In a multi-processor system,
there would probably be a boot loader
for each processor. Since the boot
loader operates out of NVRAM, the
code is usually burned-in at the factory.
As a result, all reprogramming of the
code requires removal of the proces-
sor from the board; thus, functional
requirements are kept to a minimum.
The primary functions of the boot
loader include, first, moving the oper-
ational code from PROM to RAM and
initiating the operational code and,
second, providing the capability to
read the operational code from the
maintenance interface and write it to

PROM, thereby providing the capabil-
ity to update the operational software
and providing an access for perform-
ing maintenance evaluations on the
processor(s).

• Operational code. The operational
code is responsible for performing the
operational functions of the system.
After the operational code has been
written in RAM, it has full control of
the system until the system is powered
down or has its authority removed by
another system.

• Interfaces. The interfaces provide
access to data from other systems as
well as intra-system data and include
MUX, analog to digital (A/D) and dig-
ital to analog (D/A), discrete, and
dual-port RAM interfaces.

Modes of BIT and Their
Functions
Generally, there are four modes of BIT:
Startup BIT (SBIT), Continuous BIT
(CBIT), Initiated BIT (IBIT), and
Maintenance BIT (MBIT).
• SBIT is used in the evaluation of key

functions and capabilities before the
start of the application. SBIT is usual-
ly performed or at least initiated by the
boot loader and provides a GO/NO-
GO response to the system and users.
Some of the test functions performed
in SBIT include memory, boot load,

16 CROSSTALK The Journal of Defense Software Engineering September 2006

MUX BUS

P
r

sor 1 Pro e

Analog I/F

Digital I/F

Discrete I/F

PR

I ce

r

RO

Di it l I/F

Processing Unit

A/A/D,

D/A

Figure 2: Typical Embedded System/Subsystem



Application and Evaluation of Built-In-Test (BIT) Techniques in Building Safe Systems

and interface tests. Startup culminates
in initiating the operational code.

• CBIT is run out of the operational
code and is used to evaluate selected
elements and functions during the mis-
sion. CBIT is especially applicable to
non-expendable systems such as air-
planes or weapons, where passenger or
bystander safety is involved. The oper-
ational code generally performs fore-
ground and background BIT tasks.
The foreground tasks include all nec-
essary activities to accomplish the pri-
mary operational tasks, including eval-
uations of inputs to the system. The
background tasks include CBIT activi-
ties that cannot be performed in the
foreground. The following are the
activities performed in each:
o Foreground tests are the tests

needed to assure that the inputs,
processor, and software are valid.
These tests are preformed in each
interrupt cycle. Specific fore-
ground tests include the following:
• Input tests used in input verifi-

cation include checksum; parity
checks; time tags; sequence
numbers; heartbeat checks of
digital and discrete inputs and
voltage, current, and frequency
checks for analog and power
inputs.

• Output tests are used to pro-
vide the receiver with the abili-
ty to verify the accuracy of the
digital message or verify that
the analog/discrete outputs
were correctly received.

• Processor evaluations are used
to evaluate the health of the
processor. Specific tests include
interrupt monitoring, evaluation
of timing, and memory use.

• Software evaluations include
tests on the software to prevent
inaccurate or out-of-bounds
data from causing an irre-
versible error and evaluation of
the exception handling proce-
dures provided in some soft-
ware languages.

o Background tests are performed
on an as available basis. Generally,
the background tests require more
time to complete than what is avail-
able from the system. As a result,
background tests are performed
after operational code has complet-
ed its operational functions. Back-
ground tests include the following:
• Input tests performed in the

background including loopback
tests of digital, discrete, and

analog inputs, as well as non-
destructive Stuck-on-1/Stuck-
on-0 tests of interface buffers.

• Memory tests including non-
destructive Stuck-on-1/Stuck-
on-0 tests of all applicable
memory locations.

• IBIT is a detailed BIT used in mission
readiness assessments or to assist
MBIT in pinpointing sources of errors
in the system. Typically, IBIT would be
used to pinpoint faults in the system
down to the line replaceable unit
(LRU) level. IBIT is almost always
applicable to non-expendable systems
but may also be used in expendable
systems such as a smart weapon. Since
IBIT overrides the operational code
functions, it is not used while the sys-
tem is performing its normal functions.

• MBIT is exhaustive BIT designed to
interface with the maintenance port on
the unit. A maintenance port is usually
provided in the hardware design,
specifically to allow for maintenance
on the unit. This provides peek and poke
capabilities into designated memory
locations. The more common use is
the capability to load new software
into the system without having to dis-
mantle the unit or perform any hard-
ware manipulations. MBIT is applica-
ble to all systems as a development
platform and a provider of software
upgrades.

BITs to Be Performed
Complete evaluation of a system requires
several BIT functions. The following is a
summary of the BIT functions usually
performed in a safety-critical embedded
system:
• Download BIT verifies that the soft-

ware being loaded into PROM from
the maintenance port is correct.
Download BIT is performed by the
boot loader software as part of MBIT.

• Boot Load BIT verifies that the opera-
tional software being loaded from
PROM to NVRAM is correct. Boot
Load BIT is performed in SBIT.

• Memory test verifies that the memory
locations (i.e., RAM, scratch pad,
working areas) are functioning correct-
ly. Memory tests may be performed in
all modes of BIT.

• Interface BIT verifies that the data
being passed across the interfaces are
correct. Interface tests are used in all
modes of BIT but are more critical in
CBIT.

• Power BIT verifies that the power
inputs are within defined tolerances.
As such, Power BIT is used in all

modes of BIT.
• Processor BIT verifies the functionali-

ty of the processor in real-time. Its pri-
mary use is in the CBIT mode.

• Software BIT verifies the operational
functionality of the software and is
part of CBIT.

BIT Algorithms
There are several ways to perform each of
the BITs. The following are some of the
more widely used techniques:
• Checksum is a sum of all words within a

designated memory location and is
used to verify inputs to the system or
to verify input data matches the data
sent or that the data in a memory
block has not been corrupted. In per-
forming a checksum, the sum of all
words in a message or memory block
is written to a designated location. In
validating the data block, the data
within the block are summed and
compared to the original checksum; if
the two checksums do not agree, the
test fails.

• Parity is a single bit sum of all bits
within a word or memory location(s)
and is used in evaluation of discrete
ON/OFF inputs. A typical example is
a bank of toggle switches controlling
the functions of the software system.
An exclusive OR (XOR) is used for the
evaluations:

Parity = Switch_1 XOR Switch_2 XOR
. . . XOR Switch_n

Generally, an odd parity (i.e., XOR an
additional 1 to the function) is pre-
ferred, as loss of power to the bank of
toggle switches is apparent: all zeroes,
including the parity, indicate an error
such as loss of power to the toggle
bank and a 1 indicates that all switches
are OFF and valid, and the bank of
toggle switches have power.

• Stuck-on-1/Stuck-on-0 provides the abil-
ity to evaluate all bits within a word or
memory location to ensure its ability
to maintain both 1 and 0. Data pat-
terns that exercise all bits such as 0x55
(01010101) and 0xAA (10101010) are
written to the memory location and
read back. If the pattern read from the
memory location does not match the
one written, the test fails. In a non-
destructive test, the original value in
the memory location is saved and
restored once the test is complete.

• Performance BIT monitors the processor
speed and availability as part of the
processor BIT.

• Time tagging allows the evaluation of

September 2006 www.stsc.hill.af.mil 17



Software Assurance

the time that a message was sent or the
occurrence of an event with respect to
its last occurrence. Time tagging is
used most often in validating input
messages or as assistance to the receiv-
ing processor of another subsystem.

• Sequence numbering provides the ability
to evaluate input messages with
respect to the last message: A 1 is
added to the sequence number for
each new message by the sender and
verified by the receiver.

• Loop back tests evaluate interfaces by
sending a message to the interfacing
processor or analog device which
sends the message back. The original
message is compared with the message
that was looped back.

• Memory usage evaluates the available
memory during normal use.

• Interrupt testing provides evaluation of
the interrupt routines and functions.

• Exception handling is a pre-programmed
reaction to run-time errors. Its applic-
ability in BIT is to assure an adequate
reaction to a processor or software
error.

• Stack overflow is a software test used to
evaluate arrayed variables to ensure
that they do not overflow the array
dimensions and overwrite other data.

BIT Equipment (BITE)
Figure 3 presents an overview of how
BITE is used in a processor system. The
primary purpose of BITE is to provide a
non-intrusive analysis of the systems or

interfaces that cannot be directly evaluated
using conventional software BIT proce-
dures. The operational code uses the
inputs from BITE as a GO/NO-GO indi-
cation of the health of the unit or inter-
face being tested.

Typical Test Procedures
Test procedures used in BIT are usually a
combination of several BIT techniques or
algorithms. The following items present
an overview of some of the more com-
mon test procedures:
• Download. Download of software is

typically used to update the opera-
tional code stored in PROM. This
allows the developer to upgrade the
software in the field without having to
remove any hardware from the system.
The new software is usually read in
from the maintenance port and written
to PROM. The format for the down-
load code usually includes a header, the
text of the code, and a footer. The
header includes the number of words
in the record, a sequence number for
the record, and the function to be per-
formed in the download process. The
text contains the operational code and
the footer contains the checksum of
all words in the record. The proce-
dures used to validate the code include
the following:
o Sequence checking. The sequence

checking ensures that no record is
skipped or read twice.

o Record checksum. The record

checksum is used to validate that
each record is correctly read and
stored in PROM. Each word in the
record is written to PROM, read
back, and summed with the rest of
the words in the record and com-
pared with the checksum in the
footer.

o Block checksum. The block check-
sum is the final download test and is
used to make sure that all proce-
dures were done correctly. The
final word in a code block is typi-
cally a checksum of all words in the
block of code. The final validation
check is made by re-reading all of
the memory in the designated area
of PROM and performing a check-
sum on each word.

• Boot load. The procedures for boot
load are similar to download; except,
time is usually more critical. The data is
read from PROM and written to and
read back from RAM. A continuous
checksum is performed on the data read
back from RAM. When all data has been
written to RAM, the running checksum
is compared with the block checksum in
PROM. If the checksums agree, the
boot loader initiates and transfers con-
trol to the operational code.

• Memory. Stuck-on-1/Stuck-on-0 tests
are the most widely used methods for
evaluating memory. Typically, the boot
loader initiates the Stuck-on-1/Stuck-
on-0 testing of RAM using a destruc-
tive test (i.e., the RAM memory will be
cleared before the code is written). In
CBIT, non-destructive testing is per-
formed in the background.

• Interfaces. Without question, errors
introduced in hardware to software
and software to hardware interfaces
provide the greatest opportunity for
introduction of errors into the system.
For this reason, the industry has devel-
oped some good, and in some cases,
sophisticated BIT capabilities. The fol-
lowing presents an overview of the
interface BIT capabilities:
o MUX Interfaces. MUX inter-

faces, such as the MIL-STD-1553,
are purchased as a standard proto-
col, along with the MUX processor
hardware. The 1553 has been
around since the early 1970s, pri-
marily because of the BIT used in
detecting errors and verifying the
data being transferred2. Each mes-
sage received via the 1553 has a
header, body, and footer:
• Header. The header provides

the sub-address number, num-
ber of words in the record,

18 CROSSTALK The Journal of Defense Software Engineering September 2006

2

Figure 3: Examples of Built-In-Test Equipment Functions

Figure 4: Overview of BIT Procedures for Analog Interfaces

Figure 5: Evaluation of Discrete Inputs

D/A

A/D

Digital

Processor

Analog Interface BIT using BITE.

Processing Unit

To/From

Analog Unit

BITE

D/A

A/D

Analog Unit

Digital

Processor

Analog Interface BIT UsingLoopback Tests

Processing Unit

Analog

Device

Background Continuous

A/D
Analog

Power

Processor Board

BITE

Peripheral

Equipment

Peripheral

Equipment

Software

Purpose:

– Provide non-intrusive

monitoring of equipment,

interfaces, etc., to ensure that

they are operating within

measurable limits.

– Provide information to the

software for evaluation of the

system's capability to perform.

Examples:

– Voltage and current meters to

evaluate interfaces, power

inputs, etc.

– Frequency monitoring of

analog interfaces.

– Monitoring of peripheral

equipment activities.

Parity

Bit

D1

D2

Dn

D1

D2

Dn

XOR Logic

ProcessorDiscrete

Source

Discrete Interface BIT using Parity checks.
Verification of the discrete interface can

be performed with:

– Parity checks:

• Each discrete input is input to Exclusive OR

(XOR) logic.

• The processor performs an XOR of the discrete

inputs and compares it to the one received from

the discrete source.

• Odd parity is recommended because a series of

FALSEs (0) would provide a TRUE (1) in the

parity bit (i.e., if the unit were off-line, all bits

would be False).

– Loopback tests with the other unit, evaluating

both TRUE and FALSE conditions.

Figure 3: Examples of Built-In-Test Equipment Functions

Figure 3: Examples of Built-In-Test Equipment Functions

Figure 4: Overview of BIT Procedures for Analog Interfaces

D/A

A/D

Digital

Processor

Analog Interface BIT using BITE.

Processing Unit

To/From

Analog Unit

BITE

D/A

A/D

Analog Unit

Digital

Processor

Analog Interface BIT UsingLoopback Tests

Processing Unit

Analog

Device

Background Continuous

A/D
Analog

Power

Processor Board

BITE

Peripheral

Equipment

Peripheral

Equipment

Software

Purpose:

– Provide non-intrusive

monitoring of equipment,

interfaces, etc., to ensure that

they are operating within

measurable limits.

– Provide information to the

software for evaluation of the

system's capability to perform.

Examples:

– Voltage and current meters to

evaluate interfaces, power

inputs, etc.

– Frequency monitoring of

analog interfaces.

– Monitoring of peripheral

equipment activities.

Figure 4: Overview of BIT Procedures for Analog Interfaces



Application and Evaluation of Built-In-Test (BIT) Techniques in Building Safe Systems

September 2006 www.stsc.hill.af.mil 19

sequence number, and a time-
stamp.

• Body. The body text contains
the data being sent to the
receiving processor.

• Footer. The footer contains a
checksum of all data in the
record.

The following presents an
overview of the tests used by the
1553 to validate the correctness of
the data:
• The sequence number is evalu-

ated, ensuring that no messages
were lost or that no duplicate
was sent.

• The timestamp is compared to
the previous timestamp to
ensure updates are being
received as designed.

• The data is check-summed and
compared with the checksum in
the footer.

• The MUX BUS provides heart-
beat messages to indicate it is
operational, even when no
messages are being sent.

• If any of the previous tests fail,
a signal is passed to the opera-
tional code so that backup pro-
cedures can be activated.

It should be noted that all commu-
nication protocols use similar
error-checking procedures. Most
of the digital audio and visual pro-
tocols also contain error correcting
routines.

o Processor-to-processor and dual-
port RAM interfaces. In transfer-
ring data from one processor to
another, the sending processor
writes to a designated memory
address used by another processor.
Some of the off-the-shelf hardware
packages such as dual-port RAM
have error detecting and error pre-
venting code built into the system.
Additional error detecting capabili-
ties are easily included in the BIT
process and include sequence num-
bering, timestamps, heartbeat, and
especially checksumming as
described in the MUX interfaces.

o Analog interfaces. Analog devices
are usually very dumb; by their very
nature, they do not provide any way
of evaluating the input or output
signals. Therefore, errors are com-
mon from the analog sensor itself
or during transmission. Analog
interfaces include both inputs and
outputs to the system. In order for
the digital processor to be able to
read analog inputs, an A/D proces-

sor converts the analog signal to its
digital counterpart. Conversely, the
D/A provides the analog device
with the electrical signal corre-
sponding to the digital command
from the digital processor.
Validation of input signals is typi-
cally performed by the following:
• Range checking the signal.

In order for range checking to
be effective, the full electrical
range of the analog device
must not be used for normal
inputs. Thus, a zero or full scale
reading is distinguishable as an
error and not a normal input.

• Comparing the signal with
redundant analog signals.
The use of redundant signals is
a highly reliable method of
detecting errors in analog
inputs, assuming that all common
cause errors, such as common
grounding, have been eliminat-
ed. One way of enhancing the
reliability of the redundant sig-
nals is to set the signals in
opposite directions – sensor A
provides inputs from low scale
to high and sensor B provides
inputs from high to low.

• Reasonableness checks.
Reasonableness checks evaluate
the data to ensure the inputs are
reasonable, given the previous
data. If the sensor provides
inputs that are physically impos-
sible (i.e., the velocity goes from
+100 MPH to -100 MPH in a
single 0.01 sec. cycle), the sen-
sor data is probably incorrect
and should not be used in mak-
ing critical control commands.

Validation of output signals are
usually performed by use of BITE
or loopback tests, as presented in
Figure 4.
• BITE monitors the analog

input and output channels to
ensure the correct range of
voltage, current, and/or fre-

quency signals are provided.
• BITE can also be used to per-

form an internal loopback test
which can be used to validate
the A/D and D/A converters
within the processing unit.

• Loopback tests that do not
engage the analog device are
performed in SBIT or back-
ground CBIT.

• Continuous foreground CBIT
loopback tests evaluate each sig-
nal to the analog device. Since
the foreground CBIT evaluates
all command signals, it is the
preferred method of BIT evalu-
ation for analog outputs.

o Discrete interfaces. Discrete
interfaces are typically used to acti-
vate (turn on) or deactivate (turn
off) a particular function or input.
Figure 5 provides an overview of
testing discrete inputs. Parity evalu-
ations provide evaluation of all
inputs at all times and is considered
superior when compared to other
methods of evaluations, such as
loopback tests, which must be per-
formed in the background.

• Processor. Evaluation of processors
is particularly important as new code is
added or existing code has been mod-
ified. Some of the processor BITs
include the following actions:
o Evaluate the performance of the

system by, first, setting time limits
on hardware to software functions
and measure the time to perform
primary functions; and, second,
setting flags to determine if any
high-priority functions are not per-
formed in an interrupt cycle.

o Measure and compare the memory
usage with threshold percentages
to ensure adequate capability dur-
ing operations.

o Evaluate timed interrupts by pro-
viding hardware interrupts (i.e.,
watchdog timers) to evaluate soft-
ware functions and vice versa.

• Software. The purpose of software

2

Figure 4: Overview of BIT Procedures for Analog Interfaces

Figure 5: Evaluation of Discrete Inputs

Parity

Bit

D1

D2

Dn

D1

D2

Dn

XOR Logic

ProcessorDiscrete

Source

Discrete Interface BIT using Parity checks.
Verification of the discrete interface can

be performed with:

– Parity checks:

• Each discrete input is input to Exclusive OR

(XOR) logic.

• The processor performs an XOR of the discrete

inputs and compares it to the one received from

the discrete source.

• Odd parity is recommended because a series of

FALSEs (0) would provide a TRUE (1) in the

parity bit (i.e., if the unit were off-line, all bits

would be False).

– Loopback tests with the other unit, evaluating

both TRUE and FALSE conditions.

Figure 5: Evaluation of Discrete Inputs



Software Assurance

20 CROSSTALK The Journal of Defense Software Engineering September 2006

BITs is not to perform validation of the
software but to monitor its functions
and inputs to ensure that the software
does not crash during critical opera-
tions. The procedures available for soft-
ware evaluations include the following:
o Data analysis. First, perform san-

ity checks on input data and, sec-
ond, prevent run-time errors
(divide by zero, log of zero or a
negative number, etc.) by ensuring
that incorrect and out-of-bounds
data are not used.

o Stack overflow. Provide software
checks to ensure against and report
conditions where stacks overflow
(especially necessary in C, C++,
and other languages).

o Exception handling. Provide ex-
ception handling capabilities in the
code development so that run-time
errors do not cause the system to
crash. Ada and other languages pro-
vide for exception handling routines.

Confirmation of Emergency
Procedures
Providing responses to emergency situa-
tions is one of the primary responsibilities
of safe software. Ensuring that the indi-
cated response is correct is often depen-
dent on knowing that all inputs, proce-
dures, and commands are correct. To this
end, the software system must provide
adequate BIT before the emergency proce-
dure is activated. The use of foreground
rather than background tests reduces the
time required to confirm that emergency
procedures are required. If errors are
detected, the backup or redundant inputs
and procedures built into the system pro-
vide a safe alternative. If the data was not
corrupted, a clear emergency procedure
should be activated. If data errors are
detected by BIT, the backup or redundant
inputs and procedures built into the sys-
tem provide safe alterations without hav-
ing to activate emergency procedures.

Summary
The cost of evaluating BIT and imple-
menting recommended improvements is
relatively inexpensive when built into the
system from the beginning. The ability to
perform BIT on most interfaces is deter-
mined during the high-level system design;
BIT between subsystems requires that
both subsystems perform their respective
BIT functions. However, correcting inter-
face BIT oversights requires making
changes to at least two software compo-
nents and may also require modification
of the hardware design.

There are no hard and fast rules con-
cerning BIT – certainly no one size fits all
recommendations. As a result, the applica-
tion determines the amount and detail of
BIT required. The number and type of
responses to BIT are dependent on the crit-
icality of the application and the likelihood
of the system error. Each response criteria is
determined by available software and system
backups and the level of operational capa-
bility that is desired. As a result, each backup
procedure needs to be evaluated for its ade-
quacy in meeting the response criteria.u

Notes
1. John Duncan presents a great

overview of the development of the
Instrumentation unit in <www.apollo
saturn.com/s5news/p71-7.htm>.

2. Several companies provide very good
Web sites to their 1553 products and
full standard descriptions are available
from the government. The PDF pre-
sented, <www.testsystems.com/pdf/
overview.pdf>, provides a good over-
view of the development and use of
the 1553.

About the Author

James A. Butler has
more than 35 years in
software safety analysis
and software develop-
ment, including embed-
ded systems, system engi-

neering, BM/C3, and engineering. He
has performed software safety analysis
on the Apache helicopter flight manage-
ment computer. The analyses performed
included requirements review, design
implementation, and technical adequacy
test; analysis of the design using soft-
ware failure modes, effects, and criticali-
ty analysis; and determination of critical
software components, inputs, and algo-
rithms. Butler has worked closely with
designated engineering representatives in
performing software safety evaluations
for the Chinook helicopter, digital
advanced Flight Control System, and C-
130 Intercommunication and Radio
System, and he has evaluated applicable
safety standards for the Army’s Future
Combat System.

4121 Hide-A-Way DR
Guntersville, AL 35976
Phone: (256) 505-0808
E-mail: jimjudybutler@

bellsouth.net

COMING EVENTS

October 2-3 
The DoD-DHS

Software Assurance Forum
McLean, VA

https://buildsecurityin.us-cert.
gov/daisy/bsi/events.html

October 9-11
CNIS 2006 Communication, Network,

and Information Security
Cambridge, MA

www.iasted.org/conferences/2006/
cambridge/cnis.htm

October 10-11
PNSQC 2006

The 24th Annual Pacific Northwest
Software Quality Conference

Portland, OR
www.pnsqc.org

October 10-11
VERIFY 2006

International Software Test Conference
Washington D.C.

www.effectivesoftwaretesting.com/
conference_verify.aspx

October 16-20
STAR WEST 2006

Software Testing Analysis and Review
Anaheim, CA

www.sqe.com/starwest

October 23-25
MILCOM 2006

Military Communications Conference
Washington D.C.

www.milcom.org/index.htm

October 23-26
SEC 2006

9th Annual Systems
Engineering Conference

San Diego, CA
www.ndia.org

2007
2007 Systems and Software

Technology Conference 

www.sstc-online.org


